Support	Events	Tools	Remote	Training
00	0	000	000000	000000

Visualization support in WestGrid / Compute Canada

Alex Razoumov alex.razoumov@westgrid.ca

copy of these slides at http://bit.ly/wgccvis
 (will download overview.pdf)

Support	Events	Tools	Remote	Training
•0	0	000	000000	000000
Visualizatio	n support in	Compute Ca	nada	

- Need to visualize output of a large numerical simulation or experimental/observed data? We can help!
- Our technical staff have extensive experience in scientific visualization and data analysis
 - WestGrid support support@westgrid.ca (or your local equivalent)
 - national support vis-support@computecanada.ca
 - ► for the past few years: "need vis. help" ✔ checkbox in RAC applications
- Front-end page http://bit.ly/cctopviz (team intro, visualization gallery)
- Wiki documentation (user-editable!) https://docs.computecanada.ca/wiki/Visualization

Support	Events	Tools	Remote	Training
0•	0	000	000000	000000
Visualization	n support in (Compute Ca	nada (continu	(ied)

- Primarily we use 3D open-source tools such as ParaView, VisIt, VTK, VMD, various Python libraries
- We can help you import your data¹ into one of these packages and write visualization scripts to automate your analysis as much as possible
 - (1) as long as its format/specification is open
 - instrument your code to output a compatible format
 - write a standalone converter
 - write a reader plugin
- Very large datasets can be visualized directly on Compute Canada systems, either interactively or via batch scripts

Support	Events	Tools	Remote	Training
00	•	000	000000	000000
Yearly visua	lization e	events		

- **Spring:** SEEING BIG showcase (since 2015)
 - ► researchers submit visualizations to showcase their own research
 - Mar-01 to May-31 submission window
 - ► entries are displayed in a video loop on a large 3840 × 2160 flat screen in the conference lobby at HPCS in June
 - ► submissions from a couple dozen research groups, 30-min to 60-min video
 - looking for even wider participation in 2017
- Fall: VISUALIZE THIS! challenge (since 2016)
 - all participants work on the same dataset or problem
 - competition with prizes; points awarded for interactive 3D visualization, innovative techniques to display multiple variables
 - one-month competition in 2016, likely two months in 2017
 - emphasis on creating something useful for the scientific community (techniques will be published online), suggestions welcome!
- June: possible visualization session at HPCS'2017
 - ► review submissions and techniques from most recent events
 - ► host a presentation from the VISUALIZE THIS! winner
 - ► possible visualization-themed workshop (AR/VR for scientific vis.?)

- Massive number of excellent 2D visualization tools (matplotlib, gnuplot, bokeh, various derivatives of D3.js, ...)
- Large number of 3D domain-specific (VMD, Molden, NCAR Graphics, ...) and task-specific (yt, ...) packages

We are happy to help with all of these!

... however, with large multidimensional datasets, we try to steer researchers towards scalable (parallel) 3D open-source **general-purpose scientific visualization** tools such as ParaView and VisIt

Support	Events	Tools	Remote	Training
00	0	000	000000	000000
ParaView an	d VisIt			

- Visualize any spatially-distributed data (scalar, vector, tensor fields)
- ... stored on top of any type of discretization in 2D or 3D (structured or unstructured meshes, particles, polygonal meshes, irregular topologies)
- Can handle very large datasets (GBs to TBs)
- Distributed-memory parallelism via MPI, support for parallel I/O, can scale to large $(10^3 10^5 \text{ cores})$ computing facilities
- Interactive manipulation and support for scripting
- Understand large number (100+) of data file formats
- Provide huge array of visualization features, animation
- Open-source, multi-platform, and general-purpose
- Use OpenGL for rendering acceleration on GPUs, but can run perfectly well with software-based rasterizers and ray tracers
- Support in-situ visualization
- Built on top of VTK

Support	Events	Tools	Remote	Training
00	0	000	000000	000000

Demo: running ParaView and VisIt locally

- (1) Interactive with a couple of filters (operators)
- (2) More complex visualization saved in a state (session) file
- (3) Running scripts from a built-in Python shell

Support	Events	Tools	Remote	Training
00	0	000	•00000	000000
Remote visu	alization			

If your dataset is on cluster.consortium.ca, you have many options:

- download data to your desktop and visualize it locally limited by dataset size and your desktop's CPU+GPU/memory
- (2) run ParaView/VisIt remotely on a larger machine via X11 forwarding your desktop ^{ssh −X} larger machine running ParaView/VisIt
- (3) run ParaView/VisIt remotely on a larger machine via VNC or x2go your desktop ^{VNC} larger machine running ParaView/VisIt
 - any node with X11 server; preferably a GPU compute node, could be a CPU node; scheduled or a login/development node with/without a GPU
- (4) run ParaView/VisIt in client-server modePV/VisIt viewer on your desktop = PV/VisIt on larger machine
- (5) run ParaView/VisIt via a GUI-less batch script (interactively or scheduled) – ideal for large routine visualizations

full details at http://bit.ly/remotevnc

- (1) Install TigerVNC (http://tigervnc.org) or TurboVNC
 (http://www.turbovnc.org) on your desktop
- (2) Log in to parallel.westgrid.ca and run the command *vncpasswd*, at the prompt set a password for your VNC server (don't leave it empty) – you'll use it in step 6
- (3) **Submit an interactive job** to the cluster:

qsub -q interactive -I -l nodes=1:ppn=1:gpus=1,walltime=1:00:00 When the job starts, it'll return a prompt on the assigned compute node.

(4) On the compute node start the vncserver:

vncserver It'll produce something like *"New 'X' desktop is cn*0553:1", where the syntax is *nodeName:displayNumber*

full details at http://bit.ly/remotevnc

(5) On your desktop **set up ssh forwarding** to the VNC port on the compute node:

ssh username@parallel.westgrid.ca -L xxxx:cn0553:yyyy Here xxxx = 5901 is the local VNC port, and yyyy = 5900 (VNC's default) + displayNumber and is usually 5901 as well

- (6) Start VNC viewer on your desktop, connect to *localhost:1* (that's xxxx-5900) and then enter the password from step 2 above
- (7) A remote Gnome desktop will appear inside a VNC window on your desktop

(8) Inside this desktop start a terminal, use it to start ParaView/VisIt with a VirtualGL wrapper

vglrun /global/software/ParaView/ParaView-4.4.0-Qt4-Linux-64bit/bin/paraview vglrun /scratch/ParaView-5.1.2-Qt4-OpenGL2-MPI-Linux-64bit/bin/paraview vglrun /global/software/visit/visit271/bin/visit

Support	Events	Tools	Remote	Training
00	0	000	000000	000000

Remote visualization in WestGrid (continued)

- Can start a VNC session on any compute node on any cluster
 - ► as long as this node has X11/VNC servers installed
 - let us know if you need help
- Don't need a GPU to run ParaView/VisIt
 - ► a number of open-source, software-based rasterizers and ray tracers: mesa-llvm, and more recently Intel's OSPRay and OpenSWR

Support	Events	Tools	Remote	Training
00	0	000	000000	000000
and across	s the country			

• Compute Ontario

- in SciNet users can start a VNC server on one of GPC's head nodes (no GPU) or on one of two interactive visualization nodes (each with two NVIDIA Tesla M2070 GPUs)
 - no scheduling
 - in either case behind the login node, so need to set up SSH port forwarding
 - run a VNC client on your laptop
- SHARCNET implemented a visualization VDI server running several Linux distributions (CentOS6, Fedora20, Fedora23) via containers
 - mounting cluster filesystems via a 10 Gbit/s link
 - can log in and start a remote desktop session from your laptop's VNC client or via a web browser (HTML5-based noVNC) at https://www.sharcnet.ca/my/systems
 - two K1 cards (4 GPUs each); individual GPU sharing among multiple OpenGL users via VirtualGL
- **Calcul Quebec** users can connect to an x2go server on the login node of Colosse (no GPU)
 - ► x2go also open-source, similar to VNC, need an x2go client on your laptop
 - can pause/restart sessions

Support	Events	Tools	Remote	Training
00	O	000	000000	000000
New nationa	al systems			

New clusters Cedar (SFU) and Graham (Waterloo) online around Apr-01

- https://docs.computecanada.ca/wiki/Cedar 27,696 CPU cores and 584 GPUs
- https://docs.computecanada.ca/wiki/Graham 33,576 CPU cores and 320 GPUs

We are aiming to implement an interactive visualization setup on several nodes on these cluster, details yet to be determined

- how many nodes exactly
- whether accessible directly from outside (likely!)
- whether with GPUs
- if yes, how to share individual GPUs among multiple users

In addition, users will be able to run batch-mode (non-interactive) visualizations on regular compute (CPU and/or GPU) nodes via the job scheduler

Support 00	Events O	Tools 000	Remote 000000	Training •00000
ParaView or	VisIt Full	-day in-pe	rson workshop	os
		, 1		
Hands-on, lots of	exercises, par	ticipants bring	their own laptops	
 Introduction GUI overview Scientific dat Working with Working with Quantitative Animation Scripting 	to scientific vi ^w asets and form h plots; visual h filters/opera analysis, data	isualization nats, reading fil ization pipeline ators comparison	es 2	

- Remote visualization
- ✓ Since summer 2014: WestGrid taught 11 ParaView and 3 VisIt workshops at its partner institutions
- Coming up: VisIt workshops at SFU downtown campus (Feb-01), UofAlberta (Feb-28), UofCalgary (early March?)
- * Let me know if you want a workshop at your location!

Support	Events	Tools	Remote	Training
00	O	000	000000	O●OOOO
Online webi	nars			

- Bimonthly during the academic year (January, March, May, September, November)
- One-hour long, very specific topics
- Past webinars are available with slides and video at https://www.westgrid.ca/events/archive
 - "Introduction to batch visualization"
 - "Graph visualization with Gephi"
 - ▶ "3D graphs with NetworkX, VTK, and ParaView"
 - ► "CPU-based rendering with OSPRay"
 - "Scripting and other advanced topics in VisIt visualization"

We would like to get feedback from you about future topics – please tell us your preferences

- in the chat window on the right (mouse over the video), or
- quick email to info@westgrid.ca (will be read now), or
- via audio when we take questions at the end, or
- at any time quick email to alex.razoumov@westgrid.ca

Support	Events	Tools	Remote	Training	
Future webinar ideas (continued)					

- (1) Advanced topics in VisIt scripting, including callback functions
- (2) Visualizing multi-resolution datasets in ParaView and/or VisIt
- (3) Volumetric multi-resolution vis. with http://yt-project.org
 - data defined on structured/unstructured meshes or particles
- (4) Visualization on the new systems (once they are online)
- (5) Distributed (MPI-parallel) visualization with ParaView and/or VisIt
- (6) Client-server ParaView and/or VisIt
- (7) Working with VTK objects in ParaView and/or VisIt
 - ParaView's Calculator filter and VisIt's Expressions' Standard Editor don't let you work directly with VTK ...
 - ParaView: Programmable Source and Programmable Filter
 - VisIt: Python Expression Editor and Python Query Editor

Support	Events	Tools	Remote	Training
00	O		000000	000000

Future webinar ideas (continued)

- (8) Working with numpy arrays in ParaView and/or VisIt
- (9) Rendering on (newer) CPUs with Intel's OpenSWR library (open-source, software-based OpenGL drop-in replacement)
- (10) Writing custom reader plugins in ParaView and/or VisIt
- (11) ParaViewWeb
- (12) ParaView Cinema
- (13) In-situ visualization in ParaView and/or VisIt
- (14) Programming custom UIs in VisIt

Support	Events	Tools	Remote	Training		
00	0	000	000000	000000		
Future webinar ideas (continued)						

(15) Python's Bokeh, Seaborn, Plotly, other visualization libraries

- mostly 2D \Rightarrow very easy to do, but not exactly our first choice
- (16) Constructive solid geometry (CSG) meshes in VisIt, or general unstructured (e.g., Voronoi) meshes in ParaView and/or VisIt
- (17) Photogrammetric processing of images tell us more about your requirements
 - building polynomial texture maps from a set of images taken with varying lighting direction
 - building 3D models from a set of images taken from various directions
 - the catch: ideally should be open-source
- (18) Visualization of point cloud data
- (19) Interactive online visualizations tell us more about your requirements
 - building a research data portal?
- (20) Any other special topic to your liking